Authors: Bertrand Timbal (Bureau of Meteorology)

.-~ South Eastern Australian

Final report for Project 1.3.1

Development of the analogue downscaling technique
for rainfall, temperature, dew point and pan evaporation

Principal Investigator: Dr. Bertrand Timbal,

Centre for Australian Weather and Climate Research (CAWCR),
Bureau of Meteorology

b.timbal@bom.gov.au,

Tel: 03-9669-4697, Fax: 03-9669-4660,

GPO Box 1289, Melbourne 3001

Co-Authors:

Dr. Bradley Murphy
(National Climate Centre, BoM)

Elodie Fernandez and Zhihong Li
(Centre for Australian Weather and Climate Research)

Completed: 29 February 2008

Confidential Page 1 29/02/08




Authors: Bertrand Timbal (Bureau of Meteorology)

Project Abstract - Executive summary

Initial Project objectives:
» Set up a statistical downscaling technique to relate large-scale changevariatians in
south-eastern Australia

Proposed methodology:

» Existing downscaling methodology will be expanded to include humidity varidtiéss
point temperature and pan evaporation) in addition to proven dataseal(rand daily
temperature extremes).

» Large-scale predictors will be tested and the spatial @riaff skill across south-eastern
Australia will be assessed for all calendar seasons arslitladle stations data, following
on recommendation from milestone 1.1.1.

 Methodology will be optimised for south-eastern Australia using idedtitoherent
climatic regions

Summary of thefindings:

» This project has seen the development and validation of a single downscaling method based
on the idea of meteorological analogues to the entire SEACI regiorn®raalll existing
high quality climate surface networks: rainfall, temperature,-plewt temperature and
pan-evaporation.

« The SEACI domain was divided into three climate entities: Sbethern part of the
Murray-Darling basin (SMD); east of the SMD, on the coastid sif the Great Dividing
Range, the South-East Coast (SEC) and west of the SMD, the\§estlecoast of Eastern
Australia (SWEA).

* Individual Statistical Downscaling Models (SDMs) were optimig@deach region, each
calendar season and each predictands; a total of 72 SDMgi(Bge 4 seasons * 6
predictands).

» The optimisation comprised two steps: the selection of the best atobi of predictors
(step 1) and then setting up other critical parameters of the SDM.

» The skill of the SDMs are fairly consistent across the theg®ns, the four seasons and
the six predictands, thus confirming that the analogue approach isblesgibwnscaling
method for mid-latitude temperate climate.

* The reproduction of the observed Probability Distribution Functions-¢Pivas assessed
by checking the two main moments of the reconstructed series: anéavariance. The
mean of the observed series is very well reproduced with thetexcef rainfall but all
the reconstructed series do under-estimate the observed variascenderestimation
varies from one predictand to another and is largest for rainfall.

» In the case of rainfall, because the daily PDFs is not near lphsributed the reduced
variance leads to a dry bias, this dry bias can be reduced wihyaimple and robust
inflation factor.

» The skill of the SDMs was assessed by looking at the abilitigeofechnique to reproduce
day-to-day variability using correlation and Root-Mean Square E(RIMSES): the best
correlations tend to be achieved for most variables during thasitin seasons” autumn
and spring, correlations in winter are often low but with low RMS$Es rfot less skill), in
contrast, for all variables but daily temperature extremesntuel tends to have less skill
(low correlation and high RMSES) in summer.
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Technical details

Expand existing downscaling model to humidity dataset

The Australian Bureau of Meteorology has developed a SDM using tee of
meteorological analogues (Timbal and McAvaney, 2001). This is one exaplmore general
type of SDM based on weather classification methods in which giaeds are chosen by
matching previous (i.e., analogous situations) to the current weatteer-stee method was
originally designed for weather forecasting applications but was abandmeetb its limited
success and lack of suitable analogues for systems with largesiegreeedom. The popularity
of the method has recently increased with the availability of lotige-series datasets following
the completion of reanalysis project and the recognition thatzbeokthe search space must be
suitably restricted when identifying analogues. Even so, the analoghedsill performs poorly
when the pool of training observations is limited and/or the numberas$ifyting predictors is
large. The Bureau SDM was first developed for daily temperatiremes (fin and Tnay across
the Murray-Darling Basin (MDB) (Timbal and McAvaney, 2001). ltswhen extended to rainfall
occurrences (Timbal et al., 2003) and amount (Timbal, 2004).

As part of this SEACI project, the Bureau of Meteorology existing doalimg technique has
being tested for new surface variables to complement previous @ark on rainfall and
temperature. These new surface variables are the most aelchndn to the Bureau High Quality
(HQ) climatological networks. Dew point stations were homogenisedaf, u2006) and are
available in the HQ dataset from 1957 to 2003. 13 stations acrossEf@l $lomain were
considered. At each location, daily maximum, daily minimum, and @am point temperatures
are available but the optimisation of the SDM was applied onlgiaity extreme dew point
temperature. Pan evaporation HQ stations have been also beembladsacross Australia
(Jovanovic et al., 2008) from 1975 to 2003. 24 stations are scastenmess the SEACI domain.
The Bureau pan-evaporation HQ dataset is a monthly datasqudtigy control was extended to
daily values across the SEACI region, using monthly correctionsofdhomogeneities at stations
which required such correction (as part of project 1.1.1). The appticat a SDM to these
moisture variables is a very novel research as thererisntly very few examples in the literature
of fitting a statistical downscaling model to surface moisture variaHleth( 2005 for a case study
fro dew point across the Czech republic) and none as extensive as our study.

Overall, applying a single technique across a large region subk &ACI domain and across a
large range of predictands is a very large undertaking. This extemsikea total of 72 individual
SDMs were optimised: 3 regions * 4 seasons * 6 predictandspegsible due to the simplicity of
the chosen downscaling method. The analogue approach used here is orsnopldst existing
downscaling methods. Despite its simplicity which was paramountablbeo perform this work,
this method has been shown to compare well with more advanced techizqtits and von
Storch, 1999). The simplicity, flexibility and robustness of the techniggre important to ensure
that a single technique could be used across a range of variables and se\adralrefjons.

Choice of coherent climatic regions

In order to apply the Bureau of Meteorology SDM to the SEACI domsumface
observations were gathered into three distiichate entities(Fig. 1), roughly following the
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rotated Empirical Orthogonal Functions (EOFs) for rainfall suggéstddrosdowsky (1993): (1)

the South-West of Eastern Australia (SWEA): southwest of ardinghly from Melbourne to the

south of the Flinders’ ranges and following the end of the Greatibg/iRange (GDR) over

Western Victoria, (2) the southern half of the Murray-DarlingiBgSMD) south of 30°S in the
north, limited in the west by SWEA and in the east by the GDR,(8nhthe South-East Coast
(SEC), a coastal band east of the GDR from Wilson Promontorycioria in the south all the

way along the New South Wales coast up to the Hunter valley in the north.

Figure 1: Locations of the station data chosen for the SEACI program (uppermigp} and for

the three climatic entities used to optimise the statistical doaling model: the Southern
Murray-Darling Basin (SMD), the South-West of Eastern Australia (SVeBA)the South-East
Coast (SEC). Different symbols are used for different surface paadie D for dewpoint
temperature, E for pan-Evaporation, T for temperature and the small points are raiafalh}

The number of surface predictands available in each climagiorrées summarised in Table 1.
Although a small part of the Australian continent is covered by these climatic regions,
together they cover a large proportion of the number of HQ obsensitesacross Australia
(between 30% for dew point temperature and 54% for rainfall. It undserlihe fact that these
regions are amongst the most populated in Australia: hence theetglatenser network of
observations in particular for rainfall. A logical consequencdas they are amongst the most
important for human related activities (e.g. agriculture). Fofath, a large number of additional
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stations have been used as well to apply the SDM to: the numbdditibnal rainfall stations per
climate regions is also shown (Table 1).

Predictands SWEA SMD SEC
Temperature (Tmax & Tmin) 22 18 16
. HQ network 31 24 11
Rainfall o )
additional stations 133 137 30
Pan-Evapor ation 6 8 6

Table 1. Number of stations considered in each climatic region for the four types of predictand

For temperature some stations as well were added but only auhéhély are included in the
number of temperature stations provided. Overall not all the SEA&Iant stations identified in
project 1.1.1 (and shown in the top right of Fig. 1) are included in one ofréeergions as the
original stations lists cover a wider geographical area than the thredckmiities (inserts in Fig.
1).

Optimization of the predictors

The choice of the optimal combination of predictors constitutes tke dtep in the
optimisation of the individual SDMs. The predictors considered wereenhos the basis of
previous experience while developing the BoM SDM (Timbal and McAv&@31; Timbal et al.,
2003; Timbal, 2004), and evidences in the literature from other studiesmilar areas. The
optimum combination of predictors varies across regions, seasons and predicihia )

The optimal number of predictors is often three, apart from pan ev@pondnere most frequently
only two predictors are used and for rainfall where four prediet@®ften required. The need for
a large number of predictors for rainfall shows that it is a difficult predictaraptore from large-
scale analogues. Some general patterns are emerging from theuroptombinations of
predictors:

* Mean sea level pressure (MSLP) is the most frequently charselictor. It is used for all
individual SDMs in the case of rainfall,,dx and di, but is picked up far less often for pan
evaporation. This feature suggests that MSLP is a criticdigioe for a synoptically driven
technique such as the analogue approach.

* Thermal predictors are very important, especially fagand Tnin. In general, 5o is the most
important thermal predictor, althoughyd is more important for difi, and dTax thermal
predictors rarely matter for rainfall.

» Moisture variables are also important predictors across atliggmeds with the notable

exception of Tax Specific humidity is almost always picked up apart from pan evaporation for

which relative humidity is more skilful. Rainfall is often part the optimised predictor’s
combination to downscale rainfall.

* Some measure of the air flow (either the zonal or meridionapocoant of the wind) is often
added to the optimised combination. It is an additional predictor tetfiacto combination of
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synoptic-thermal-moisture. It is most useful for rainfall and then, and least useful for dew-
point temperature and pan evaporation. The zonal component is the most frequently used.

Variable Season SWEA SEC SMDB
. Summer MSLP & Tgso MSLP & Thax MSLP & Tiax
Maximum
Autumn MSLP & Tiax MSLP & Thax MSLP & Tpax
Temperature .
T Wlnter MSLP & Tgs0 & Tmax& Usso MSLP & Thax MSLP & Tg50 & Tmax& Usgso
max Spring | MSLP & T MSLP & Toso & Trnax Ugso | MSLP & Taso & Usso
.. Summer | MSLP & Teso MSLP & Tgso & Qsso Tas0 & Qeso
Minimum
Autumn MSLP & T850 & QSSO MSLP & T850 & QSSO T850 & QSSO
Temperature .
T Winter MSLP & Tgs0 & Qgso MSLP & Tgs0 & Tmin & Usso MSLP & Tgso & Qsso
min Spring | MSLP & Taso & Qsso MSLP & Toso & Qeso MSLP & Tsso & Qeso
Summer MSLP & PRCR& Tgso MSLP & Tmax& Qsgso & Usgso MSLP & PRCP & \so
Rainfall AutuMN | MSLP & Trax& Qes0& Ugso | MSLP & PRCF& Qgso & Ugso | MSLP & PRCP & \éso
PRCP Winter MSLP & PRCP& V gso MSLP & PRCR& Ugso MSLP & PRCP & \4so
Spring MSLP & PRCP MSLP & PRCR Qgso & Ugsp | MSLP & PRCP & \so
MaXimum Summer | MSLP & Qs MSLP & Qu25& T min MSLP & Q350 & Tmin & Vsso
dew-point | Autumn | MSLP & Qus& Trin & Vaso | MSLP & Qo5& Trmin MSLP & Qus0& Trmin & Vso
Temperatureg Winter | MSLP & Qus& Trin MSLP & Quz5& T min Tin
dT max Spring | MSLP & Quzs& Toin MSLP & Q258 T min MSLP & Qsso
Minimum sSummer | MSLP & Qus& Tmin MSLP& Qo25& T min MSLP & Qss0 & Taso
deW-pOint Autumn MSLP & Qu25& T min MSLP & Qo25& T min MSLP & Qss0 & Tmin & Usgso
Temperature Winter | MSLP & Qus& Tmin MSLP & Qus& Tin MSLP & Qss0 & Trmin & Vaso
dT min Spring | MSLP & Qus& Trin MSLP & Quzs& Tomin MSLP & Qsso & Taso
Pan SumMmMmMer | Tmx& Rezs Tmax& Rozs Trnax& Raso
. Autumn | Tmax& Rezs Trmax& Rozs Timax& Reso
Evaporation .
P Evap Wlnter Tmax& R925 MSLP & Tmax& R925 Tmax& R925
Spring | Toa& Rezs Tnax& Roz5& Usso Trnax& Raso

Table 2: Optimum combination of predictors for each calendar seasons andtpeesictands in
three regions: SWEA, SEC and SMD. The predictors are defined as folgwP M the Mean Sea
Level Pressure; faxand Thin are the surface min and max temperature; PRCP is the total rainfall
Q is the specific humidity; R is the relative humidity; This temperature; U and V are the zonal
and meridional wind components; and subscript numbers indicates the atmogphel for the
variable in hPa.

The second step of the optimisation of individual SDMs was to sedrup sritical parameters of

the analogue model. The SDM includes a large number of tuneable pasrmetever previous

studies have shown that only three parameters are criticaharefdre only these three where
systematically explored:

1. The size of the geographical domain used for the predictors (latitdingitude); in general
two domain sizes were tested; these domain’ sizes are region dependent

2. The calendar window from which analogues are found. Three periodseserd;t15, 30 and
60 days prior to or after the date for which an analogue is searched for.

3. The way the daily anomalies are calculated using either tim@#hly means or a single
seasonal average.
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Once these two steps were completed, the optimised SDMs wilated their skills were
systematically evaluated.

Skill of the SDM

The evaluation of the skill of the SDMs was done using a fullgssralidated approach to
ensure that no spurious skill was taken into account. The model wasptirised on one half of
the existing dataset and then applied to the other half (the lengtlesef halves varies for each
predictands according to the length of the available record). When afaptlesl validation part of
the dataset, analogue are searched for in the development half of the dataset sfaligumr®ss-
validation. Hence if the climate has recorded a shift duringwbeperiods, the method has to be
able to reproduce that shift, thus adding confidence in the abilitigeofeichnique to reproduce
non-stationarity in the climate system now (useful for dete@iuh attribution study) and in the
future (useful for generating regional projections). However in tluggt;, only the ability of the
technique to reproduce the simultaneous observations was analysedilitheof the method to
reproduce observed changes is currently underway as part of the préjeéctHere, the evaluation
of the SDMs focused on the ability of the technique to reproduce timeamaracteristics of the
observed series and that it is doing it for the right reasons.

A range of metrics was used. First the ability of the tepimito reproduce the observed
probability distribution functions (PDFs) was evaluated by looking atifstetwo moments of the
PDFs: the mean and the variance. Further than the ability ofetimique to reproduce the
observed shape of the PDFs as defined by the first two momettits séries, it is important to
ensure that the technique is skilful in reproducing day-to-daybikiyathat is driven by large-
scale synoptic changes. As indeed a random choice of analogue would regredacty the
observed mean and variance but is not a skilful model. To do so,drPRe&orrelation between
daily observed and reconstructed series was calculated sepaetekgion, per season and for
each predictand. Each number is an average across all obseraataiiable in each region.
Alongside the correlation coefficient, Root-Mean-Square errors EY1Svere also used to
complement the evaluation of the skill of the SDMs to reproducetaddgly variability. The
motivation to use both correlation and RMSE is to be able to ditiate between cases where
correlation is low but RMSEs are also low: indicative of an Meskeseries with little variability
and hence difficult to reproduce very well, and cases where a&toreis low and RMS is large
indicative of a less skilful SDM. Results are detailed in the appendix alt&xhigs report.

Overall it was found that the analogue approach was successfus dteoSEACI domain, as
results are fairly consistent across the three regions, the four seasons andrédticgands. It was
found that the mean of the observed series is very well reprodacedl fvariables with the
exception of rainfall, but the reconstructed series does under-estimaobserved variance in all
cases. This underestimation of the variance varies from one taretlito another. In the case of
rainfall, because the underestimation is very large and theRRFs do not have a near-normal
distribution, the reduced variance leads to a dry bias. The variedhgetion issues and subsequent
dry bias can be addressed using a very simple (i.e. a single pararefficient applicable to all
stations and all seasons) and robust (i.e. it only depends on the pool ofedbssnfall
occurrences and hence is applicable to the downscaling of climatdsiiodiation factor. In
terms of ability to reproduce day-to-day variability, it wiasnd that the analogue method was
overall quite successful. The lowest skill was observed foralgitiie best for daily temperature
extremes. The best correlations tend to be achieved for mosblgariduring the “transition
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seasons” autumn and spring, correlations in winter are often low tbutowi RMSES (i.e. not less
skill), in contrast, for all variables but daily temperature emmes, the model tends to have less
skill (low correlation and high RMSES) in summer.
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Project Milestone Reporting Table

Milestone Performance Completion| Budgef | Progres3 Recomme
description indicator$ date for nded
Mileston changes to
e ($) workplar?

1. Test Quantify skill of | 01/01/07 30 k$ | Large-scale RH is the
statistical this technique for predictors have only
downscaling on| moisture field been tested. surface
humidity predictand
dataset S not used.
2. ldentify SE Australia subt 01/05/07 25k$ | 3 sub-domains haveNone
coherent domains defined been identified
climatic regions across the S.E.A.
3. Optimize Define the 01/09/07 25k$ | All individual None.
choice of optimal model in models have been | Work
predictors all cases optimised. completed
4. Evaluate skill A 6-page report | 01/01/08 25k$ | This work is now | None.
of the technique compiling results completed.
across the area| from a range of The 6-page report is
of interest metrics near Comp|etion

and will be attached

to the project final

report
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Appendix: Technical report on the evaluation of the technique (Milestone 4).

Methodology:

Following on the work done to select suitable stations for all sifeedictands: maximal
and minimal daily temperature £&, Tmin), rainfall, pan-evaporation and maximal and minimal
daily dew-point temperature (gdx dTmin) @s part of project 1.1.1, statistical Downscaling Models
(SDMs) were formed by first identifying coherent climatic regions (rules 2 of this project) and
optimizing the choice of predictors (milestone 3). This report suimasathe evaluation of the
skill of individual SDMs across the South-East of Australia (A the six surface predictands
(milestone 4).

The evaluation of the SDMs is done in a fully cross-validated mamhermodel is first optimised
on one half of the existing dataset and then applied to the otherWiadin applied to the
validation part of the dataset, analogue are searched for in themeeat half of the dataset to
ensure full cross-validation. Hence if the climate has recordsdftaduring the two periods, the
method has to be able to reproduce that shift, thus adding confidence idithefathie technique
to reproduce non-stationarity in the climate system now (usefdetection and attribution study)
and in the future (useful for generating regional projections).

The evaluation was carried out using a range of metrics. thestbility of the technique to
reproduce the observed probability distribution functions (PDFs) walsated by looking at the
first two moments of the PDFs: the mean and the variancedd3etfie ability of the technique to
reproduce the observed shape of the PDFs as defined by the dinstamvents of the series, it is
important to ensure that the technique is skilful in reproducing dayyteatability that is driven
by large-scale synoptic changes. Indeed, a random choice of analogue epvattlice perfectly
the observed mean and variance but is not a skilful model. TheoReanselation between daily
observed and reconstructed series was calculated separatedgiper per season and for each
predictand. Each number is an average across all observatiorblavaileach region. Alongside
the correlation coefficient, Root-Mean-Square Errors (RMSEsgwlso used to complement the
evaluation of the skill of the SDMs to reproduce day-to-daiakdity. The motivation to use both
correlation and RMSE is to be able to differentiate betweers aglkere correlation is low but
RMSEs are also low: indicative of an observed series Wit liariability and hence difficult to
reproduce very well, and cases where correlation is low and RM&iEge indicative of a less
skilful SDM.

Temperature:

In the case of daily extreme temperature, the development perid®@b8 to 1982 and the
validation period is 1983 to 2006 (i.e. analogues to reproduce 1983 to 2006k yp from
1958 to 1982, a notably cooler period in many instances). The reproductienroéan values for
both predictands (Fig. 1) is very accurate. In each graph, pointspanceto a single location for
a single season with the observed mean value on the x-axis anddhstmécted mean along the
y-axis. The number of points in each graph is equal to the total numbatiohs in one of the
three climate regions times four seasons (224 in the case péraore). Results for the mean are
not far from a perfect match (especially fog.), with points aligned with the diagonal.
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Fig 1. Scatter plot of the reconstructed versus observed mean (top row) and variance (second row)
and correlations (third row) and RMSEs (fourth row) between the twesstar T,ax (left) and

Tmin (right). On scatter plots, there is one point per station padseason, the colour-code refers

to season: winter (blue), spring (green), summer (red) and autarange). The diagonal is the

line of perfect fit. Correlations and RMSEs are averaged acrossadibiss per region (name on
X-axis) and specified by season (coloured bars). Units for mean, variance and RMGSE are °
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Furthermore there is no evidence that the SDMs have moreutliffiat reproducing mean
observed values at either hand of the spectrum (large or small values).

Similarly results are shown for the reproduction of the standarétdevi The technique appears
to have a tendency to underestimate the observed variance: peialgyaed below the diagonal
for most cases. This is particularly true in summer fgy But obvious across all seasons fg..T
Average across all stations the reduction of variance rang®slft.8% in winter to 0% in spring
for Tmaxand 11.8% in winter and 5.3% in summer fgg,T

This variance underestimation is relatively small with thal@gue approach (which does not
require any linear assumption) compared to many other techniquepafirtular linear
techniques), but it remains an issue across all statisticaisaling technique (von Storch, 1999).
For temperature, as daily values are not far from being normally distributed, thestimoiation of
the variance does not have a flow-on effect on the reproduction ofdle (anbiased as noted
earlier).

Finally the ability of the SDM to skilfully reproduce day-to-degriability (i.e. the ability to
reproduce the right PDFs for the right reasons) appears veryssfiddeased on correlations for
both Tnax Tmin- There is a marked seasonal cycle in correlation coefficieowser values are
observed in winter and highest values during autumn and spring. Hoimewerst instances, in
particular for Thax Winter corresponds also to the lowest RMSEs. Therefore the tmauedation
does not imply less skill but a season where day-to-day vigiabiless marked and hence harder
to capture. On the contrary in autumn and spring the high correlatiors aatéelp by large day-
to-day variability during the transient seasons. In the casg,;@fiflis not obvious as RMSEs are
fairly similar across all seasons and hence the lower correlations im suggest that the model is
less skilful. Overall no particular region stands out as a dbineatdtity where the SDM skill in
reproducing day-to-day variability is consistently lower or highwoss all seasons. This result
vindicates the fact that the model is applicable to the entisehSEastern part of Australia where
the climate by and large is driven by synoptic disturbances.

Rainfall:

Similar graphs were generated for rainfall (Fig. 2), as fopesature, the development
period is 1958 to 1982 and the validation period is 1983 to 2006. The reproductioffirst tine
moments of the series (mean and variance) is less suddbssf for temperature (left plots in the
first two rows of Fig. 2). The underestimation of the varianceusharger: ranging from 27% in
autumn to 45% in summer. The consequence of the reduction of variative,case of rainfall,
can be seen on the reproduction of the mean; points are locatedtbeldvagonal, indicating a
bias toward drier values for reconstructed series. In the casenédll, the reproduction of the
mean is dependent on the ability of the technique to reproduce the obgarnaace as rainfall is
not normally distributed. For this reason, a correction factor to atfjasteconstructed rainfall
series and enhance the variance and improve the reproduction ok#mewas introduced in
earlier applications of the analogue approach to rainfall seridgestern Australia (Timbal et al.,
2006).

The rationale for the applied correction is that the analogue reactest rainfall is affected by the

size of the pool of analogues which becomes smaller in the caseeofarge rainfall events.
Therefore, the error in finding the best matching analogue increaddebechances are that the
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best analogue found would describe more frequent but less intensel ravdaks thus
underestimating the rainfall in the reconstructed series. dsssimed that the size of the pool
depends on the ratio of rain days over dry days and that is vatdsathe range of climates
encounter in SEA as it was the case in W.A.
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Fig 2: As per Fig. 1 but for rainfall. The additional two scatter plot of tbeonstructed versus
observed mean and variance (in the right column) are for rainfall antinflation factor applied
to the reconstructed series (see main text for details). Units are mm.

It was decided that the same very simple factor should be apytieolut further adjustment to
limit some of the danger linked to artificially inflating theriance when using downscaling
techniques (von Storch, 1999). The following single factor was used
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factor

N
C o, =1+ 010x Nd”f And C_ <15

wet

Where Niy and Nyt are the numbers of dry and wet (> 0.3mm) days observed for tlua sdaen
individual location. These numbers are station and season dependenard loayculated on the
available observations from which analogues are drawn and aeéotleendependent of the series
being reconstructed. These ratios are equally applicable when degetbpidownscaling model
(and hence evaluating their impact) or when downscaling climate simulations.

The impact of the inflation factor is clear (right plots in tirstftwo rows of Fig. 2). It has
dramatically reduced the variance bias and lead to an unepaxiuction of the mean (as was the
case for temperature) and un-biased reproduction of the variancefdtbebetter than for
temperature). However, the spread of the reconstructed versusembseean of the series is
unchanged with the uncorrected series and is larger than with temperature.

For rainfall, correlations are by far lower than for tempeggtalthough due to the very large
sample considered (about 2000 days); all these correlations are signifieast at the 95% level,
indicating some level of skill. Correlations peak in winter (up to 0.8.4) and are particularly
low for the dry season: summer and autumn in the case of SWEAe Tow correlations are
confirmed by the high values for RMSEs. The largest errors are seen in sumdniiee amallest in
winter thus confirming that the SDMs are more skilful for rainfall in winter.

Dew-point temperature:

Finally the skill of the model on newly formed high-quality datais evaluated, starting
with dew-point temperature (Lucas, 2006): daily maximalTand daily minimum (dfn). In
the case of daily extreme dew-point temperature, the developméd 1958 to 1982 and the
validation period is 1983 to 2003 (as the high quality dataset has not been updated past that point)

Results are very similar than for temperature, the SDMsable to reproduce the mean of the
observed series very accurately (with slightly larger srfor dTni,). The underestimation of the
variance is again visible: ranging between 11.6% in summer and 4.4%uimn for dT.., and
from 16.7% in winter and 7.7% in spring for g1 As for temperature, daily values of dew-point
temperature are not far from being normally distributed, and héwmcertderestimation of the
variance does not have a flow-on effect on the reproduction of the mean.

Correlations between reconstructed and daily series faidave a lot in common with results for
temperature, albeit with correlation being overall lower. Lowestetation are in winter but
corresponds to low RMSEs as well, hence not suggesting less skilidg.3Highest correlation

are seen during the “transition season” autumn and spring and larg&EsRtdnd to be in
summer. In the case of g} results are very homogeneous across seasons and regions. The
exception being SMD during the spring and summer when RMSEs are myehaad correlation

are rather low thus suggesting that the model is less skilful durengvarmer seasons in this
region.
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Fig 3: As per Fig. 1 but for daily maximum dew point temperature (left) arg oanimum dew

point temperature (right). Units for mean, variance and RMSE are °C.
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Pan-evaporation:

Finally in the case of pan-evaporation, for which the high qualitgséa span a shorter
period (Jovanovic et al., 2008), the development period is 1975 to 1988 and the validatiorsperiod i
1989 to 2003 (as the high quality dataset has not been updated past that point).

As for the other variables, the mean of the reconstructed senesy accurate although some
errors up to 1 mm.dédyare noticeable during the warmer seasons (spring and summer).dErrors
the variance can be quite large, up to 3 mni‘daysome instances, but there is a slightly lesser
bias toward a reduction of the variance. The mean variance asansen 13.7% in winter and
only 1.6% in spring.

The skill of the SDMs in reproducing day-to-day variability varies adiohfone season to another
according to the correlation: it is high for the transitions seaasoddow in winter (especially in
SMD and SWEA) and in summer (especially in SEC). HoweveRM&ESs suggest that the low
correlations in winter are partly due to very small day to dayability thus giving very small
RMSEs. On the contrary in summer, the low correlation and high RM&tgest that the SDMs
have less skill.
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Fig 4: As per Fig. 1 but for pan-Evaporation. Units for mean, variance and RMSE are rifm.day
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Conclusions:

Overall the evaluation of the skill of the SDMs has shown that:

» The results are fairly consistent across the three regions thus confirmirtgethaatogue
approach is a suitable downscaling method for mid-latitude temperate ¢limate

» The reproduction of the mean of the observed series (in a fully cross-validatediseesy
accurate with the exception of rainfall;

» For all variables, the reconstructed series does under-estimate theedhserance, this
underestimation varies from one predictand to another and is largest falf;rainfa

* In the case of rainfall, because the daily PDFs is not near normally disdrtbeteeduced
variance leads to a dry bias, this dry bias can be reduced with a very sichptdast inflation
factor;

» Best skills tend to be achieved for most variables during the “transition seastunsih and
spring;

» Correlations in winter are often low but this is often because the day-to-dalyihtgrin
winter is low rather than because the model is less skilful; and

* In contrast, for all variables but daily temperature extremes, the modeloemalge less skill
(low correlation and high RMSES) in summer.
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