
Authors: Bertrand Timbal  (Bureau of Meteorology)  

Confidential Page 1 29/02/08 

 

Final report for Project 1.3.1 
 

Development of the analogue downscaling technique 
for rainfall, temperature, dew point and pan evaporation 
 

Principal Investigator:  Dr. Bertrand Timbal,  

Centre for Australian Weather and Climate Research (CAWCR),  

Bureau of Meteorology 

b.timbal@bom.gov.au,   

Tel: 03-9669-4697, Fax: 03-9669-4660,  

GPO Box 1289, Melbourne 3001 

 

Co-Authors:      

Dr. Bradley Murphy       
 (National Climate Centre, BoM) 

Elodie Fernandez and Zhihong Li     
 (Centre for Australian Weather and Climate Research) 
 

 
 

  Completed:  29 February 2008 



Authors: Bertrand Timbal  (Bureau of Meteorology)  

Confidential Page 2 29/02/08 

Project Abstract - Executive summary 
 
 
Initial Project objectives: 

• Set up a statistical downscaling technique to relate large-scale changes to local variations in 
south-eastern Australia 

 
Proposed methodology: 

• Existing downscaling methodology will be expanded to include humidity variables (dew 
point temperature and pan evaporation) in addition to proven dataset (rainfall and daily 
temperature extremes).  

• Large-scale predictors will be tested and the spatial variation of skill across south-eastern 
Australia will be assessed for all calendar seasons and the suitable stations data, following 
on recommendation from milestone 1.1.1. 

• Methodology will be optimised for south-eastern Australia using identified coherent 
climatic regions  

 
Summary of the findings: 

• This project has seen the development and validation of a single downscaling method based 
on the idea of meteorological analogues to the entire SEACI regions and for all existing 
high quality climate surface networks: rainfall, temperature, dew-point temperature and 
pan-evaporation. 

• The SEACI domain was divided into three climate entities: the Southern part of the 
Murray-Darling basin (SMD); east of the SMD, on the coastal side of the Great Dividing 
Range, the South-East Coast (SEC) and west of the SMD, the South-West coast of Eastern 
Australia (SWEA). 

• Individual Statistical Downscaling Models (SDMs) were optimised for each region, each 
calendar season and each predictands; a total of 72 SDMs (3 regions * 4 seasons * 6 
predictands). 

• The optimisation comprised two steps: the selection of the best combination of predictors 
(step 1) and then setting up other critical parameters of the SDM. 

• The skill of the SDMs are fairly consistent across the three regions, the four seasons and 
the six predictands, thus confirming that the analogue approach is a suitable downscaling 
method for mid-latitude temperate climate. 

• The reproduction of the observed Probability Distribution Functions (PDFs) was assessed 
by checking the two main moments of the reconstructed series: mean and variance. The 
mean of the observed series is very well reproduced with the exception of rainfall but all 
the reconstructed series do under-estimate the observed variance, this underestimation 
varies from one predictand to another and is largest for rainfall. 

• In the case of rainfall, because the daily PDFs is not near normally distributed the reduced 
variance leads to a dry bias, this dry bias can be reduced with a very simple and robust 
inflation factor. 

• The skill of the SDMs was assessed by looking at the ability of the technique to reproduce 
day-to-day variability using correlation and Root-Mean Square Errors (RMSEs): the best 
correlations tend to be achieved for most variables during the “transition seasons” autumn 
and spring, correlations in winter are often low but with low RMSEs (i.e. not less skill), in 
contrast, for all variables but daily temperature extremes, the model tends to have less skill 
(low correlation and high RMSEs) in summer. 
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Technical details 
 
 
Expand existing downscaling model to humidity dataset 
 
 The Australian Bureau of Meteorology has developed a SDM using the idea of 
meteorological analogues (Timbal and McAvaney, 2001). This is one example of a more general 
type of SDM based on weather classification methods in which predictands are chosen by 
matching previous (i.e., analogous situations) to the current weather-state. The method was 
originally designed for weather forecasting applications but was abandoned due to its limited 
success and lack of suitable analogues for systems with large degrees of freedom. The popularity 
of the method has recently increased with the availability of longer time-series datasets following 
the completion of reanalysis project and the recognition that the size of the search space must be 
suitably restricted when identifying analogues. Even so, the analogue method still performs poorly 
when the pool of training observations is limited and/or the number of classifying predictors is 
large. The Bureau SDM was first developed for daily temperature extremes (Tmin and Tmax) across 
the Murray-Darling Basin (MDB) (Timbal and McAvaney, 2001). It was then extended to rainfall 
occurrences (Timbal et al., 2003) and amount (Timbal, 2004).  
 
As part of this SEACI project, the Bureau of Meteorology existing downscaling technique has 
being tested for new surface variables to complement previous work done on rainfall and 
temperature. These new surface variables are the most recent addition to the Bureau High Quality 
(HQ) climatological networks. Dew point stations were homogenised (Lucas, 2006) and are 
available in the HQ dataset from 1957 to 2003. 13 stations across the SEACI domain were 
considered. At each location, daily maximum, daily minimum, and 9am dew point temperatures 
are available but the optimisation of the SDM was applied only to daily extreme dew point 
temperature. Pan evaporation HQ stations have been also been assembled across Australia 
(Jovanovic et al., 2008) from 1975 to 2003. 24 stations are scattered across the SEACI domain. 
The Bureau pan-evaporation HQ dataset is a monthly dataset, the quality control was extended to 
daily values across the SEACI region, using monthly corrections for non-homogeneities at stations 
which required such correction (as part of project 1.1.1). The application of a SDM to these 
moisture variables is a very novel research as there is currently very few examples in the literature 
of fitting a statistical downscaling model to surface moisture variables (Huth, 2005 for a case study 
fro dew point across the Czech republic) and none as extensive as our study. 
 
Overall, applying a single technique across a large region such as the SEACI domain and across a 
large range of predictands is a very large undertaking. This extensive work (a total of 72 individual 
SDMs were optimised: 3 regions * 4 seasons * 6 predictands) was possible due to the simplicity of 
the chosen downscaling method. The analogue approach used here is one of the simplest existing 
downscaling methods. Despite its simplicity which was paramount to be able to perform this work, 
this method has been shown to compare well with more advanced techniques (Zorita and von 
Storch, 1999). The simplicity, flexibility and robustness of the technique were important to ensure 
that a single technique could be used across a range of variables and several climatic regions. 
  
 
 
Choice of coherent climatic regions 
 
 In order to apply the Bureau of Meteorology SDM to the SEACI domain, surface 
observations were gathered into three distinct climate entities (Fig. 1), roughly following the 
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rotated Empirical Orthogonal Functions (EOFs) for rainfall suggested by Drosdowsky (1993): (1) 
the South-West of Eastern Australia (SWEA): southwest of a line roughly from Melbourne to the 
south of the Flinders’ ranges and following the end of the Great Dividing Range (GDR) over 
Western Victoria, (2) the southern half of the Murray-Darling Basin (SMD) south of 30ºS in the 
north, limited in the west by SWEA and in the east by the GDR, and (3) the South-East Coast 
(SEC), a coastal band east of the GDR from Wilson Promontory in Victoria in the south all the 
way along the New South Wales coast up to the Hunter valley in the north.   
 
 

 
 

Figure 1: Locations of the station data chosen for the SEACI program (upper right map) and for 
the three climatic entities used to optimise the statistical downscaling model: the Southern 
Murray-Darling Basin (SMD), the South-West of Eastern Australia (SWEA) and the South-East 
Coast (SEC). Different symbols are used for different surface predictands: D for dewpoint 
temperature, E for pan-Evaporation, T for temperature and the small points are rainfall station). 
 
 
The number of surface predictands available in each climatic region is summarised in Table 1. 
Although a small part of the Australian continent is covered by these three climatic regions, 
together they cover a large proportion of the number of HQ observation sites across Australia 
(between 30% for dew point temperature and 54% for rainfall. It underlines the fact that these 
regions are amongst the most populated in Australia: hence the relatively denser network of 
observations in particular for rainfall. A logical consequence is that they are amongst the most 
important for human related activities (e.g. agriculture). For rainfall, a large number of additional 
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stations have been used as well to apply the SDM to: the number of additional rainfall stations per 
climate regions is also shown (Table 1).  
 

Predictands SWEA SMD SEC 

Temperature (Tmax & Tmin) 22 18 16 

HQ network 31 24 11 
Rainfall  

additional stations 133 137 30 

Pan-Evaporation 6 8 6 

Dew point (dTmax & dTmin) 3 2 5 

 
Table 1: Number of stations considered in each climatic region for the four types of predictand 
 
For temperature some stations as well were added but only a handful (they are included in the 
number of temperature stations provided. Overall not all the SEACI relevant stations identified in 
project 1.1.1 (and shown in the top right of Fig. 1) are included in one of the three regions as the 
original stations lists cover a wider geographical area than the three climatic entities (inserts in Fig. 
1). 
 
 
 
Optimization of the predictors 
 
 The choice of the optimal combination of predictors constitutes the first step in the 
optimisation of the individual SDMs. The predictors considered were chosen on the basis of 
previous experience while developing the BoM SDM (Timbal and McAvaney, 2001; Timbal et al., 
2003; Timbal, 2004), and evidences in the literature from other studies in similar areas. The 
optimum combination of predictors varies across regions, seasons and predictands (Table 2).  
 
The optimal number of predictors is often three, apart from pan evaporation where most frequently 
only two predictors are used and for rainfall where four predictors are often required. The need for 
a large number of predictors for rainfall shows that it is a difficult predictand to capture from large-
scale analogues. Some general patterns are emerging from the optimum combinations of 
predictors: 
• Mean sea level pressure (MSLP) is the most frequently chosen predictor. It is used for all 

individual SDMs in the case of rainfall, Tmax and dTmin but is picked up far less often for pan 
evaporation. This feature suggests that MSLP is a critical predictor for a synoptically driven 
technique such as the analogue approach.  

• Thermal predictors are very important, especially for Tmax and Tmin. In general, T850 is the most 
important thermal predictor, although Tmin is more important for dTmin and dTmax; thermal 
predictors rarely matter for rainfall.  

• Moisture variables are also important predictors across all predictands with the notable 
exception of Tmax. Specific humidity is almost always picked up apart from pan evaporation for 
which relative humidity is more skilful. Rainfall is often part of the optimised predictor’s 
combination to downscale rainfall.  

• Some measure of the air flow (either the zonal or meridional component of the wind) is often 
added to the optimised combination. It is an additional predictor to the de-facto combination of 
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synoptic-thermal-moisture. It is most useful for rainfall and then Tmax, and least useful for dew-
point temperature and pan evaporation. The zonal component is the most frequently used.  

 
 

Variable Season SWEA SEC SMDB 

Summer MSLP & T850 MSLP & Tmax MSLP & Tmax 

Autumn MSLP & Tmax MSLP & Tmax MSLP & Tmax 

Winter MSLP & T850 & Tmax & U850 MSLP & Tmax MSLP & T850 & Tmax & U850 

Maximum 
Temperature 

Tmax Spring MSLP & T850 MSLP & T850 & Tmax & U850 MSLP & T850 & U850 

Summer MSLP & T850 MSLP & T850 & Q850 T850 & Q850 

Autumn MSLP & T850 & Q850 MSLP & T850 & Q850 T850 & Q850 

Winter MSLP & T850 & Q850 MSLP & T850 & Tmin  & U850 MSLP & T850 & Q850 

Minimum 
Temperature 

Tmin Spring MSLP & T850 & Q850 MSLP & T850 & Q850 MSLP & T850 & Q850 

Summer MSLP & PRCP & T850 MSLP & Tmax & Q850 & U850 MSLP & PRCP & V850 

Autumn MSLP & Tmax & Q850 & U850 MSLP & PRCP & Q850 & U850 MSLP & PRCP & V850 

Winter MSLP & PRCP & V 850 MSLP & PRCP & U850 MSLP & PRCP & V850 

Rainfall 
PRCP 

Spring MSLP & PRCP MSLP & PRCP & Q850 & U850 MSLP & PRCP & V850 

Summer MSLP & Q925  MSLP & Q925 & Tmin  MSLP & Q850 & Tmin  & V 850 

Autumn MSLP & Q925 & Tmin  & V 850 MSLP & Q925 & Tmin  MSLP & Q850 & Tmin  & V 850 

Winter MSLP & Q925 & Tmin MSLP & Q925 & Tmin  Tmin 

Maximum 
dew-point 

Temperature 
dTmax Spring MSLP & Q925 & Tmin MSLP & Q925 & Tmin  MSLP & Q850 

Summer MSLP & Q925 & Tmin   MSLP & Q925 & Tmin MSLP & Q850 & T850 

Autumn MSLP & Q925 & Tmin MSLP & Q925 & Tmin  MSLP & Q850 & Tmin  & U850 

Winter MSLP & Q925 & Tmin MSLP & Q925 & Tmin  MSLP & Q850 & Tmin  & V 850 

Minimum 
dew-point 

Temperature 
dTmin Spring MSLP & Q925 & Tmin MSLP & Q925 & Tmin  MSLP & Q850 & T850 

Summer Tmax & R925  Tmax & R925 Tmax & R850  

Autumn Tmax & R925  Tmax & R925 Tmax & R850 

Winter Tmax & R925  MSLP  & Tmax & R925 Tmax & R925 

Pan-
Evaporation 

P-Evap 
Spring Tmax & R925  Tmax & R925 & U850 Tmax & R850 

 
Table 2: Optimum combination of predictors for each calendar seasons and the six predictands in 
three regions: SWEA, SEC and SMD. The predictors are defined as follow: MSLP is the Mean Sea 
Level Pressure; Tmax and Tmin are the surface min and max temperature; PRCP is the total rainfall; 
Q is the specific humidity; R is the relative humidity; T is the temperature; U and V are the zonal 
and meridional wind components; and subscript numbers indicates the atmospheric level for the 
variable in hPa. 
  
The second step of the optimisation of individual SDMs was to set up some critical parameters of 
the analogue model. The SDM includes a large number of tuneable parameters; however previous 
studies have shown that only three parameters are critical and therefore only these three where 
systematically explored: 
 
1. The size of the geographical domain used for the predictors (latitude and longitude); in general 

two domain sizes were tested; these domain’ sizes are region dependent 
2. The calendar window from which analogues are found. Three periods were tested; 15, 30 and 

60 days prior to or after the date for which an analogue is searched for. 
3. The way the daily anomalies are calculated using either three monthly means or a single 

seasonal average. 
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Once these two steps were completed, the optimised SDMs were validated their skills were 
systematically evaluated. 
 
 
 
Skill of the SDM 
 
 The evaluation of the skill of the SDMs was done using a fully cross-validated approach to 
ensure that no spurious skill was taken into account. The model was first optimised on one half of 
the existing dataset and then applied to the other half (the length of these halves varies for each 
predictands according to the length of the available record). When applied to the validation part of 
the dataset, analogue are searched for in the development half of the dataset to ensure a fully cross-
validation. Hence if the climate has recorded a shift during the two periods, the method has to be 
able to reproduce that shift, thus adding confidence in the ability of the technique to reproduce 
non-stationarity in the climate system now (useful for detection and attribution study) and in the 
future (useful for generating regional projections). However in this project, only the ability of the 
technique to reproduce the simultaneous observations was analysed; the ability of the method to 
reproduce observed changes is currently underway as part of the project 1.4.1. Here, the evaluation 
of the SDMs focused on the ability of the technique to reproduce the main characteristics of the 
observed series and that it is doing it for the right reasons. 
 
A range of metrics was used. First the ability of the technique to reproduce the observed 
probability distribution functions (PDFs) was evaluated by looking at the first two moments of the 
PDFs: the mean and the variance. Further than the ability of the technique to reproduce the 
observed shape of the PDFs as defined by the first two moments of the series, it is important to 
ensure that the technique is skilful in reproducing day-to-day variability that is driven by large-
scale synoptic changes. As indeed a random choice of analogue would reproduce perfectly the 
observed mean and variance but is not a skilful model. To do so, the Pearson correlation between 
daily observed and reconstructed series was calculated separately per region, per season and for 
each predictand. Each number is an average across all observations available in each region. 
Alongside the correlation coefficient, Root-Mean-Square errors (RMSEs) were also used to 
complement the evaluation of the skill of the SDMs to reproduce day-to-day variability. The 
motivation to use both correlation and RMSE is to be able to differentiate between cases where 
correlation is low but RMSEs are also low: indicative of an observed series with little variability 
and hence difficult to reproduce very well, and cases where correlation is low and RMS is large 
indicative of a less skilful SDM. Results are detailed in the appendix attached to this report. 
 
Overall it was found that the analogue approach was successful across the SEACI domain, as 
results are fairly consistent across the three regions, the four seasons and the six predictands. It was 
found that the mean of the observed series is very well reproduced for all variables with the 
exception of rainfall, but the reconstructed series does under-estimate the observed variance in all 
cases. This underestimation of the variance varies from one predictand to another. In the case of 
rainfall, because the underestimation is very large and the daily PDFs do not have a near-normal 
distribution, the reduced variance leads to a dry bias. The variance reduction issues and subsequent 
dry bias can be addressed using a very simple (i.e. a single parametric coefficient applicable to all 
stations and all seasons) and robust (i.e. it only depends on the pool of observed rainfall 
occurrences and hence is applicable to the downscaling of climate models) inflation factor. In 
terms of ability to reproduce day-to-day variability, it was found that the analogue method was 
overall quite successful. The lowest skill was observed for rainfall, the best for daily temperature 
extremes. The best correlations tend to be achieved for most variables during the “transition 



Authors: Bertrand Timbal  (Bureau of Meteorology)  

Confidential Page 8 29/02/08 

seasons” autumn and spring, correlations in winter are often low but with low RMSEs (i.e. not less 
skill), in contrast, for all variables but daily temperature extremes, the model tends to have less 
skill (low correlation and high RMSEs) in summer. 
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Project Milestone Reporting Table 
 
 
Milestone 
description1 

 

Performance 
indicators2 

 

Completion 
date3 

 

Budget4 
for 
Mileston
e ($) 

Progress5 

 

Recomme
nded 
changes to 
workplan6 

 

1. Test 
statistical 
downscaling on 
humidity 
dataset 

Quantify skill of 
this technique for 
moisture field 

01/01/07 30 k$ Large-scale 
predictors have 
been tested. 

RH is the 
only 
surface 
predictand
s not used. 

2. Identify 
coherent 
climatic regions  

SE Australia sub-
domains defined 

01/05/07 25 k$ 3 sub-domains have 
been identified 
across the S.E.A. 

None 

3. Optimize 
choice of 
predictors 

Define the 
optimal model in 
all cases 

01/09/07 25 k$ All individual 
models have been 
optimised. 

None. 
Work 
completed  

4. Evaluate skill 
of the technique 
across the area 
of interest 

A 6-page report 
compiling results 
from a range of 
metrics 

01/01/08 25 k$ This work is now 
completed.  

The 6-page report is 
near completion 
and will be attached 
to the project final 
report 

None. 
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Appendix: Technical report on the evaluation of the technique (Milestone 4). 
 
 

Methodology: 
  
 Following on the work done to select suitable stations for all surface predictands: maximal 
and minimal daily temperature (Tmax, Tmin), rainfall, pan-evaporation and maximal and minimal 
daily dew-point temperature (dTmax, dTmin) as part of project 1.1.1, statistical Downscaling Models 
(SDMs) were formed by first identifying coherent climatic regions (milestone 2 of this project) and 
optimizing the choice of predictors (milestone 3). This report summarizes the evaluation of the 
skill of individual SDMs across the South-East of Australia (SEA) for the six surface predictands 
(milestone 4).  
 
The evaluation of the SDMs is done in a fully cross-validated manner. The model is first optimised 
on one half of the existing dataset and then applied to the other half. When applied to the 
validation part of the dataset, analogue are searched for in the development half of the dataset to 
ensure full cross-validation. Hence if the climate has recorded a shift during the two periods, the 
method has to be able to reproduce that shift, thus adding confidence in the ability of the technique 
to reproduce non-stationarity in the climate system now (useful for detection and attribution study) 
and in the future (useful for generating regional projections).  
 
The evaluation was carried out using a range of metrics. First the ability of the technique to 
reproduce the observed probability distribution functions (PDFs) was evaluated by looking at the 
first two moments of the PDFs: the mean and the variance. Besides the ability of the technique to 
reproduce the observed shape of the PDFs as defined by the first two moments of the series, it is 
important to ensure that the technique is skilful in reproducing day-to-day variability that is driven 
by large-scale synoptic changes. Indeed, a random choice of analogue would reproduce perfectly 
the observed mean and variance but is not a skilful model. The Pearson correlation between daily 
observed and reconstructed series was calculated separately per region, per season and for each 
predictand. Each number is an average across all observations available in each region. Alongside 
the correlation coefficient, Root-Mean-Square Errors (RMSEs) were also used to complement the 
evaluation of the skill of the SDMs to reproduce day-to-day variability. The motivation to use both 
correlation and RMSE is to be able to differentiate between cases where correlation is low but 
RMSEs are also low: indicative of an observed series with little variability and hence difficult to 
reproduce very well, and cases where correlation is low and RMSE is large indicative of a less 
skilful SDM. 
 
 

Temperature: 
 
 In the case of daily extreme temperature, the development period is 1958 to 1982 and the 
validation period is 1983 to 2006 (i.e. analogues to reproduce 1983 to 2006 are picked up from 
1958 to 1982, a notably cooler period in many instances). The reproduction of the mean values for 
both predictands (Fig. 1) is very accurate. In each graph, points correspond to a single location for 
a single season with the observed mean value on the x-axis and the reconstructed mean along the 
y-axis. The number of points in each graph is equal to the total number of stations in one of the 
three climate regions times four seasons (224 in the case of temperature). Results for the mean are 
not far from a perfect match (especially for Tmax), with points aligned with the diagonal.  
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Fig 1: Scatter plot of the reconstructed versus observed mean (top row) and variance (second row) 
and correlations (third row) and RMSEs (fourth row) between the two series for Tmax (left) and 
Tmin (right). On scatter plots, there is one point per station and per season, the colour-code refers 
to season: winter (blue), spring (green), summer (red) and autumn (orange). The diagonal is the 
line of perfect fit. Correlations and RMSEs are averaged across all stations per region (name on 
X-axis) and specified by season (coloured bars). Units for mean, variance and RMSE are ºC. 
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Furthermore there is no evidence that the SDMs have more difficulty at reproducing mean 
observed values at either hand of the spectrum (large or small values).  
 
Similarly results are shown for the reproduction of the standard deviation. The technique appears 
to have a tendency to underestimate the observed variance: points are aligned below the diagonal 
for most cases. This is particularly true in summer for Tmax but obvious across all seasons for Tmin. 
Average across all stations the reduction of variance ranges from 11.8% in winter to 0% in spring 
for Tmax and 11.8% in winter and 5.3% in summer for Tmin.  
 
This variance underestimation is relatively small with the analogue approach (which does not 
require any linear assumption) compared to many other techniques (in particular linear 
techniques), but it remains an issue across all statistical downscaling technique (von Storch, 1999). 
For temperature, as daily values are not far from being normally distributed, the underestimation of 
the variance does not have a flow-on effect on the reproduction of the mean (unbiased as noted 
earlier).   
 
Finally the ability of the SDM to skilfully reproduce day-to-day variability (i.e. the ability to 
reproduce the right PDFs for the right reasons) appears very successful based on correlations for 
both Tmax, Tmin. There is a marked seasonal cycle in correlation coefficients: lower values are 
observed in winter and highest values during autumn and spring. However in most instances, in 
particular for Tmax, winter corresponds also to the lowest RMSEs. Therefore the lower correlation 
does not imply less skill but a season where day-to-day variability is less marked and hence harder 
to capture. On the contrary in autumn and spring the high correlation values are help by large day-
to-day variability during the transient seasons. In the case of Tmin, it is not obvious as RMSEs are 
fairly similar across all seasons and hence the lower correlations in winter suggest that the model is 
less skilful. Overall no particular region stands out as a climatic entity where the SDM skill in 
reproducing day-to-day variability is consistently lower or higher across all seasons. This result 
vindicates the fact that the model is applicable to the entire South-Eastern part of Australia where 
the climate by and large is driven by synoptic disturbances.  
 
 

Rainfall: 
 
 Similar graphs were generated for rainfall (Fig. 2), as for temperature, the development 
period is 1958 to 1982 and the validation period is 1983 to 2006. The reproduction of the first two 
moments of the series (mean and variance) is less successful than for temperature (left plots in the 
first two rows of Fig. 2). The underestimation of the variance is much larger: ranging from 27% in 
autumn to 45% in summer. The consequence of the reduction of variance, in the case of rainfall, 
can be seen on the reproduction of the mean; points are located below the diagonal, indicating a 
bias toward drier values for reconstructed series. In the case of rainfall, the reproduction of the 
mean is dependent on the ability of the technique to reproduce the observed variance as rainfall is 
not normally distributed. For this reason, a correction factor to adjust the reconstructed rainfall 
series and enhance the variance and improve the reproduction of the mean was introduced in 
earlier applications of the analogue approach to rainfall series in Western Australia (Timbal et al., 
2006).  
 
The rationale for the applied correction is that the analogue reconstructed rainfall is affected by the 
size of the pool of analogues which becomes smaller in the case of rare large rainfall events. 
Therefore, the error in finding the best matching analogue increases and the chances are that the 
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best analogue found would describe more frequent but less intense rainfall events thus 
underestimating the rainfall in the reconstructed series. It is assumed that the size of the pool 
depends on the ratio of rain days over dry days and that is valid across the range of climates 
encounter in SEA as it was the case in W.A. 
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Fig 2: As per Fig. 1 but for rainfall. The additional two scatter plot of the reconstructed versus 
observed mean and variance (in the right column) are for rainfall with an inflation factor applied 
to the reconstructed series (see main text for details). Units are mm. 

 
 
It was decided that the same very simple factor should be applied without further adjustment to 
limit some of the danger linked to artificially inflating the variance when using downscaling 
techniques (von Storch, 1999). The following single factor was used 
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wet

dry

factor N

N
C ×+= 10.0.1    And  5.1≤

factor
C  

 
Where Ndry and Nwet are the numbers of dry and wet (> 0.3mm) days observed for the season at an 
individual location. These numbers are station and season dependent. They are calculated on the 
available observations from which analogues are drawn and are therefore independent of the series 
being reconstructed. These ratios are equally applicable when developing the downscaling model 
(and hence evaluating their impact) or when downscaling climate simulations.  
 
The impact of the inflation factor is clear (right plots in the first two rows of Fig. 2). It has 
dramatically reduced the variance bias and lead to an un-bias reproduction of the mean (as was the 
case for temperature) and un-biased reproduction of the variance (therefore better than for 
temperature). However, the spread of the reconstructed versus observed mean of the series is 
unchanged with the uncorrected series and is larger than with temperature. 
 
For rainfall, correlations are by far lower than for temperature, although due to the very large 
sample considered (about 2000 days); all these correlations are significant at least at the 95% level, 
indicating some level of skill. Correlations peak in winter (up to 0.3 to 0.4) and are particularly 
low for the dry season: summer and autumn in the case of SWEA. These low correlations are 
confirmed by the high values for RMSEs. The largest errors are seen in summer and the smallest in 
winter thus confirming that the SDMs are more skilful for rainfall in winter.  
 
 

Dew-point temperature: 
 
  Finally the skill of the model on newly formed high-quality dataset is evaluated, starting 
with dew-point temperature (Lucas, 2006): daily maximal (dTmax) and daily minimum (dTmin). In 
the case of daily extreme dew-point temperature, the development period is 1958 to 1982 and the 
validation period is 1983 to 2003 (as the high quality dataset has not been updated past that point). 
 
Results are very similar than for temperature, the SDMs are able to reproduce the mean of the 
observed series very accurately (with slightly larger errors for dTmin). The underestimation of the 
variance is again visible: ranging between 11.6% in summer and 4.4% in autumn for dTmax, and 
from 16.7% in winter and 7.7% in spring for dTmin. As for temperature, daily values of dew-point 
temperature are not far from being normally distributed, and hence the underestimation of the 
variance does not have a flow-on effect on the reproduction of the mean. 
 
Correlations between reconstructed and daily series for dTmax have a lot in common with results for 
temperature, albeit with correlation being overall lower. Lowest correlation are in winter but 
corresponds to low RMSEs as well, hence not suggesting less skilful SDMs. Highest correlation 
are seen during the “transition season” autumn and spring and largest RMSEs tend to be in 
summer. In the case of dTmin results are very homogeneous across seasons and regions. The 
exception being SMD during the spring and summer when RMSEs are much larger and correlation 
are rather low thus suggesting that the model is less skilful during the warmer seasons in this 
region. 
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Fig 3: As per Fig. 1 but for daily maximum dew point temperature (left) and daily minimum dew 
point temperature (right). Units for mean, variance and RMSE are ºC. 
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Pan-evaporation: 
 
 Finally in the case of pan-evaporation, for which the high quality dataset span a shorter 
period (Jovanovic et al., 2008), the development period is 1975 to 1988 and the validation period is 
1989 to 2003 (as the high quality dataset has not been updated past that point).  
 
As for the other variables, the mean of the reconstructed series is very accurate although some 
errors up to 1 mm.day-1 are noticeable during the warmer seasons (spring and summer). Errors on 
the variance can be quite large, up to 3 mm.day-1 in some instances, but there is a slightly lesser 
bias toward a reduction of the variance. The mean variance bias is between 13.7% in winter and 
only 1.6% in spring. 
 
The skill of the SDMs in reproducing day-to-day variability varies a lot form one season to another 
according to the correlation: it is high for the transitions seasons and low in winter (especially in 
SMD and SWEA) and in summer (especially in SEC). However the RMSEs suggest that the low 
correlations in winter are partly due to very small day to day variability thus giving very small 
RMSEs. On the contrary in summer, the low correlation and high RMSEs suggest that the SDMs 
have less skill. 
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Fig 4: As per Fig. 1 but for pan-Evaporation. Units for mean, variance and RMSE are mm.day-1. 
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Conclusions: 
 
Overall the evaluation of the skill of the SDMs has shown that: 
 
• The results are fairly consistent across the three regions thus confirming that the analogue 

approach is a suitable downscaling method for mid-latitude temperate climate; 
• The reproduction of the mean of the observed series (in a fully cross-validated sense) is very 

accurate with the exception of rainfall; 
• For all variables, the reconstructed series does under-estimate the observed variance, this 

underestimation varies from one predictand to another and is largest for rainfall; 
• In the case of rainfall, because the daily PDFs is not near normally distributed the reduced 

variance leads to a dry bias, this dry bias can be reduced with a very simple and robust inflation 
factor; 

• Best skills tend to be achieved for most variables during the “transition seasons” autumn and 
spring; 

• Correlations in winter are often low but this is often because the day-to-day variability in 
winter is low rather than because the model is less skilful; and 

• In contrast, for all variables but daily temperature extremes, the model tends to have less skill 
(low correlation and high RMSEs) in summer. 
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